Bibliography

1

A. Adcroft, W. Anderson, V. Balaji, C. Blanton, M. Bushuk, C. O. Dufour, J. P. Dunne, S. M. Griffies, R. Hallberg, M. J. Harrison, I. M. Held, M. F. Jansen, J. G. John, J. P. Krasting, A. R. Langenhorst, S. Legg, Z. Liang, C. McHugh, A. Radhakrishnan, B. G. Reichl, T. Rosati, B. L. Samuels, A. Shao, R. Stouffer, M. Winton, A. T. Wittenberg, B. Xiang, N. Zadeh, and R. Zhang. The GFDL global ocean and sea ice model OM4.0: model description and simulation features. J. Adv. Mod. Earth Sys., 11(10):3167–3211, 2019. doi:10.1029/2019ms001726.

2

Alistair Adcroft and Robert Hallberg. On methods for solving the oceanic equations of motion in generalized vertical coordinates. Ocean Modelling, 11(1-2):224–233, January 2006. URL: http://www.sciencedirect.com/science/article/pii/S1463500305000090 (visited on 2019-01-02), doi:10.1016/j.ocemod.2004.12.007.

3

Alistair Adcroft, Robert Hallberg, and Matthew Harrison. A finite volume discretization of the pressure gradient force using analytic integration. Ocean Modelling, 22(3-4):106–113, January 2008. URL: http://www.sciencedirect.com/science/article/pii/S1463500308000243 (visited on 2019-01-02), doi:10.1016/j.ocemod.2008.02.001.

4

Akio Arakawa and Yueh-Jiuan G. Hsu. Energy conserving and potential-enstrophy dissipating schemes for the shallow water equations. Monthly Weather Review, 118:1960–1969, 1990. doi:10.1175/1520-0493(1990)118<1960:ECAPED>2.0.CO;2.

5

Akio Arakawa and Vivian R. Lamb. A Potential Enstrophy and Energy Conserving Scheme for the Shallow Water Equations. Monthly Weather Review, 109(1):18–36, January 1981. URL: https://journals.ametsoc.org/doi/abs/10.1175/1520-0493(1981)109%3C0018:APEAEC%3E2.0.CO%3B2, doi:10.1175/1520-0493(1981)109<0018:APEAEC>2.0.CO;2.

6

T. H. Bell. Lee waves in stratified flows with simple harmonic time dependence. J. Fluid Mech., 67(4):705–722, 1975. doi:10.1017/s0022112075000560.

7

Rainer Bleck. An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modelling, 4(1):55–88, 2002. URL: http://www.sciencedirect.com/science/article/pii/S1463500301000129 (visited on 2016-02-04), doi:10.1016/S1463-5003(01)00012-9.

8

Rainer Bleck and Linda T. Smith. A wind‐driven isopycnic coordinate model of the north and equatorial atlantic ocean: 1. model development and supporting experiments. JGR Oceans, 95:3273–3285, 1990. doi:10.1029/JC095iC03p03273.

9

K. Bryan and L. J. Lewis. A water mass model of the world ocean. J. Geophys. Res., 84(C5):2503, 1979. doi:10.1029/jc084ic05p02503.

10

Jr. Carpenter, Richard L., Kelvin K. Droegemeier, Paul R. Woodward, and Carl E. Hane. Application of the piecewise parabolic method (ppm) to meteorological modeling. Monthly Weather Review, 118:586––612, 1990. doi:https://doi.org/10.1175/1520-0493(1990)118<0586:AOTPPM>2.0.CO;2.

11

Phillip Colella and Paul R Woodward. The Piecewise Parabolic Method (PPM) for gas-dynamical simulations. Journal of Computational Physics, 54(1):174–201, April 1984. URL: https://www.sciencedirect.com/science/article/pii/0021999184901438 (visited on 2017-02-09), doi:10.1016/0021-9991(84)90143-8.

12

G. Danabasoglu, S. C. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock, and S. G. Yeager. The CCSM4 ocean component. J. Climate, 25(5):1361–1389, 2012. doi:10.1175/jcli-d-11-00091.1.

13

John K. Dukowicz and John R. Baumgardner. Incremental Remapping as a Transport/Advection Algorithm. Journal of Computational Physics, 160(1):318–335, May 2000. URL: http://www.sciencedirect.com/science/article/pii/S0021999100964659 (visited on 2019-03-27), doi:10.1006/jcph.2000.6465.

14

Dale R. Durran. Numerical Methods for Fluid Dynamics With Applications to Geophysics. Springer-Verlag New York, 2010. doi:10.1007/978-1-4419-6412-0.

15

Richard C. Easter. Two modified versions of bott's positive-definite numerical advection scheme. Monthly Weather Review, 121:297–304, 1993. doi:10.1175/1520-0493(1993)121<0297:TMVOBP>2.0.CO;2.

16

B. Fox-Kemper, G. Danabasoglu, R. Ferrari, S. M. Griffies, R. W. Hallberg, M. M. Holland, M. E. Maltrud, S. Peacock, and B. L. Samuels. Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations. Ocean Modelling, 39(1):61–78, January 2011. URL: http://www.sciencedirect.com/science/article/pii/S1463500310001290, doi:10.1016/j.ocemod.2010.09.002.

17

B. Fox-Kemper and R. Ferrari. Parameterization of mixed layer eddies. part ii: prognosis and impact. J. Phys. Oceangraphy, 38:1166–1179, 2008. doi:10.1175/2007JPO3788.1.

18

B. Fox-Kemper, R. Ferrari, and R. Hallberg. Parameterization of mixed layer eddies. part i: theory and diagnosis. J. Phys. Oceangraphy, 38:1145–1165, 2008. doi:10.1175/2007JPO3792.1.

19

Peter R. Gent and James C. Mcwilliams. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20:150–155, 1990. doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

20

Peter R. Gent, Jurgen Willebrand, Trevor J. McDougall, and James C. McWilliams. Parameterizing Eddy-Induced Tracer Transports in Ocean Circulation Models. Journal of Physical Oceanography, 25(4):463–474, April 1995. URL: https://journals.ametsoc.org/doi/10.1175/1520-0485%281995%29025%3C0463%3APEITTI%3E2.0.CO%3B2 (visited on 2018-10-10), doi:10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

21

S. M. Griffies, M. Levy, A. J. Adcroft, G. Danabasoglu, R. W. Hallberg, D. Jacobsen, W. Large, and T. Ringler. Theory and numerics of the community ocean vertical mixing (cvmix) project. Technical Report, NOAA GFDL, 2015.

22

Stephen M. Griffies. Fundamentals of Ocean Climate Models. Princeton University Press, Princeton, USA, 2004. 518+xxxiv pages.

23

Stephen M. Griffies, Claus Böning, Frank O. Bryan, Eric P. Chassignet, Rüdiger Gerdes, Hiroyasu Hasumi, Anthony Hirst, Anne-Marie Treguier, and David Webb. Developments in ocean climate modelling. Ocean Modelling, 2(3):123–192, January 2000. URL: http://www.sciencedirect.com/science/article/pii/S1463500300000147 (visited on 2019-03-07), doi:10.1016/S1463-5003(00)00014-7.

24

Stephen M. Griffies and Robert W. Hallberg. Biharmonic Friction with a Smagorinsky-Like Viscosity for Use in Large-Scale Eddy-Permitting Ocean Models. Monthly Weather Review, 128(8):2935–2946, August 2000. URL: https://journals.ametsoc.org/doi/full/10.1175/1520-0493%282000%29128%3C2935%3ABFWASL%3E2.0.CO%3B2 (visited on 2018-06-10), doi:10.1175/1520-0493(2000)128<2935:BFWASL>2.0.CO;2.

25

Robert Hallberg. Localized Coupling between Surface and Bottom-Intensified Flow over Topography. Journal of Physical Oceanography, 27(6):977–998, June 1997. URL: http://journals.ametsoc.org/doi/abs/10.1175/1520-0485(1997)027%3C0977%3ALCBSAB%3E2.0.CO%3B2 (visited on 2016-09-21), doi:10.1175/1520-0485(1997)027<0977:LCBSAB>2.0.CO;2.

26

Robert Hallberg. Stable split time stepping schemes for large-scale ocean modeling. Journal of Computational Physics, 135:54–65, 1997. doi:DOI:10.1006/jcph.1997.5734.

27

Robert Hallberg. Time integration of diapycnal diffusion and richardson number–dependent mixing in isopycnal coordinate ocean models. Monthly Weather Review, 128:1402–1419, 2000.

28

Robert Hallberg. A thermobaric instability of lagrangian vertical coordinate ocean models. Ocean Modelling, 2005. doi:10.1016/j.ocemod.2004.01.001.

29

Robert Hallberg and Alistair Adcroft. Reconciling estimates of the free surface height in Lagrangian vertical coordinate ocean models with mode-split time stepping. Ocean Modelling, 29(1):15–26, January 2009. URL: http://www.sciencedirect.com/science/article/pii/S1463500309000298 (visited on 2019-01-02), doi:10.1016/j.ocemod.2009.02.008.

30

M. J. Harrison and R. W. Hallberg. Pacific Subtropical Cell Response to Reduced Equatorial Dissipation. Journal of Physical Oceanography, 38(9):1894–1912, September 2008. URL: https://journals.ametsoc.org/doi/abs/10.1175/2008JPO3708.1 (visited on 2018-12-20), doi:10.1175/2008JPO3708.1.

31

Frank S. Henyey, Jon Wright, and Stanley M. Flatté. Energy and action flow through the internal wave field: An eikonal approach. Journal of Geophysical Research: Oceans, 91(C7):8487–8495, 1986. URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JC091iC07p08487 (visited on 2018-12-20), doi:10.1029/JC091iC07p08487.

32

C. W. Hirt, A. A. Amsden, and J. L. Cook. An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds. Journal of Computational Physics, 135(2):203–216, August 1997. URL: http://www.sciencedirect.com/science/article/pii/S0021999197957028 (visited on 2016-10-05), doi:10.1006/jcph.1997.5702.

33

H. T. Huynh. Schemes and constraints for advection. In P. Kutler, J. Flores, and J.J. Chattot, editors, Fifteenth International Conference on Numerical Methods in Fluid Dynamics, volume 490. Springer, Berlin, Heidelberg, 1997. doi:10.1007/BFb0107151.

34

David R. Jackett and Trevor J. McDougall. Minimal adjustment of hydrographic profiles to achieve static stability. J. Atmos. Ocean. Tech., 12:381–389, 1995. doi:10.1175/1520-0426(1995)012<0381:MAOHPT>2.0.CO;2.

35

L. Jackson, R. Hallberg, and S. Legg. A Parameterization of Shear-Driven Turbulence for Ocean Climate Models. Journal of Physical Oceanography, 38(5):1033–1053, May 2008. URL: https://journals.ametsoc.org/doi/10.1175/2007JPO3779.1 (visited on 2018-10-12), doi:10.1175/2007JPO3779.1.

36

Malte F. Jansen, Alistair J. Adcroft, Robert Hallberg, and Isaac M. Held. Parameterization of eddy fluxes based on a mesoscale energy budget. Ocean Modelling, 92:28–41, August 2015. URL: http://www.sciencedirect.com/science/article/pii/S1463500315000967 (visited on 2018-09-21), doi:10.1016/j.ocemod.2015.05.007.

37

P. D. Killworth and N. R. Edwards. A turbulent bottom boundary layer code for use in numerical ocean models. J. Phys. Oceanography, 29(6):1221–1238, 1999. doi:10.1175/1520-0485(1999)029<1221:atbblc>2.0.co;2.

38

E. B. Kraus and J. S. Turner. A one-dimensional model of the seasonal thermocline II. the general theory and its consequences. Tellus, 19(1):98–106, 1967. doi:10.3402/tellusa.v19i1.9753.

39

W. G. Large, J. C. McWilliams, and S. C. Doney. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32(4):363–403, 1994. URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/94RG01872 (visited on 2019-01-16), doi:10.1029/94RG01872.

40

Shian-Jiann Lin, Winston C. Chao, Y. C. Sud, and G. K. Walker. A class of the van leer-type transport schemes and its application to the moisture transport in a general circulation model. Mon. Wea. Rev., 122:1575–1593, 1994. doi:10.1175/1520-0493(1994)122<1575:ACOTVL>2.0.CO;2.

41

D. P. Marshall and A. J. Adcroft. Parameterization of ocean eddies: potential vorticity mixing, energetics and arnold first stability theorem. Ocean Modelling, 32:188–204, 2010. doi:10.1016/j.ocemod.2010.02.001.

42

Trevor J. McDougall and Peter C. McIntosh. The Temporal-Residual-Mean Velocity. Part II: Isopycnal Interpretation and the Tracer and Momentum Equations. Journal of Physical Oceanography, 31(5):1222–1246, May 2001. URL: https://journals.ametsoc.org/doi/10.1175/1520-0485%282001%29031%3C1222%3ATTRMVP%3E2.0.CO%3B2 (visited on 2018-10-10), doi:10.1175/1520-0485(2001)031<1222:TTRMVP>2.0.CO;2.

43

Angelique Melet, Robert Hallberg, Sonya Legg, and Kurt Polzin. Sensitivity of the Ocean State to the Vertical Distribution of Internal-Tide-Driven Mixing. Journal of Physical Oceanography, 43(3):602–615, December 2012. URL: https://journals.ametsoc.org/doi/full/10.1175/JPO-D-12-055.1 (visited on 2018-11-19), doi:10.1175/JPO-D-12-055.1.

44

F.J. Millero. Freezing point of seawater. In Eight report of the Joint Panel on Oceanographic Tables and Standards (JPOTS), number 28, 29–35. UNESCO technical papers in marine sciences, 1978. Annex 6. URL: https://www.researchgate.net/publication/292574579_Freezing_point_of_seawater.

45

P. Muller. A\textquotesingle ha huliko\textquotesingle a workshop series. Technical Report, School of Ocean and Earth Science and Technology, 2003. doi:10.21236/ada618366.

46

P. P. Niiler and E. B. Kraus. Modelling and Prediction of the Upper Layers of the Ocean, chapter One-dimesional models of the upper ocean. Pergamon Press, 1977.

47

M. Nikurashin and R. Ferrari. Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: application to the southern ocean. J. Phys. Oceanography, 40(9):2025–2042, 2010. doi:10.1175/2010jpo4315.1.

48

M. Nikurashin and R. Ferrari. Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: theory. J. Phys. Oceanography, 40(5):1055–1074, 2010. doi:10.1175/2009jpo4199.1.

49

J. M. Oberhuber. Simulation of the atlantic circulation with a coupled sea ice-mixed layer-isopycnal general circulation model. part II: model experiment. J. Phys. Oceanography, 23(5):830–845, 1993. doi:10.1175/1520-0485(1993)023<0830:sotacw>2.0.co;2.

50

R. C. Pacanowski and S. G. H. Philander. Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanography, 11(11):1443–1451, 1981. doi:10.1175/1520-0485(1981)011<1443:povmin>2.0.co;2.

51

Kurt L. Polzin. Idealized solutions for the energy balance of the finescale internal wave field. J. Phys. Oceanogr., 34:231–246, 2004.

52

Kurt L. Polzin. An abyssal recipe. Ocean Modelling, 30(4):298–309, January 2009. URL: http://www.sciencedirect.com/science/article/pii/S1463500309001565 (visited on 2018-11-19), doi:10.1016/j.ocemod.2009.07.006.

53

Brandon G. Reichl and Robert Hallberg. A simplified energetics based planetary boundary layer (ePBL) approach for ocean climate simulations. Ocean Modelling, 132:112–129, December 2018. URL: http://www.sciencedirect.com/science/article/pii/S1463500318301069 (visited on 2018-11-16), doi:10.1016/j.ocemod.2018.10.004.

54

F. Roquet, G. Madec, T. J. McDougall, and P. M. Barker. Accurate polynomial expressions for the density and specific volume of seawater using the teos-10 standard. Ocean Modelling, 90:29–43, 2015.

55

Gary L. Russell and Jean A. Lerner. A new finite-differencing scheme for the tracer transport equation. Journal of Applied Meteorology, 20:1483–1498, 1981. doi:10.1175/1520-0450(1981)020<1483:ANFDSF>2.0.CO;2.

56

Robert Sadourny. The Dynamics of Finite-Difference Models of the Shallow-Water Equations. Journal of the Atmospheric Sciences, 32(4):680–689, April 1975. URL: https://journals.ametsoc.org/doi/abs/10.1175/1520-0469%281975%29032%3C0680%3ATDOFDM%3E2.0.CO%3B2 (visited on 2019-07-28), doi:10.1175/1520-0469(1975)032<0680:TDOFDM>2.0.CO;2.

57

Andrew Shao, Alistair Adcroft, Robert Hallberg, and Stephen Griffies. A new, general-coordinate, non-local neutral diffusion operator. 2019.

58

A. F. Shchepetkin and J. C. McWilliams. The regional ocean modeling system (roms): a split-explicit, free-surface, topography-following coordinates oceanic model. Ocean Modeling, 9:347–404, 2005.

59

H. L. Simmons, S. R. Jayne, L. C. St. Laurent, and A. J. Weaver. Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6:245–263, 2004. doi:10.1016/S1463-5003(03)00011-8.

60

L. C. St Laurent, H. L. Simmons, and S. R. Jayne. Estimating tidally driven mixing in the deep ocean. Geophysical Research Letters, 29(23):21–1–21–4, December 2002. URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2002GL015633 (visited on 2018-11-19), doi:10.1029/2002GL015633.

61

Shan Sun, Rainer Bleck, Claes Rooth, John Dukowicz, Eric Chassignet, and Peter Killworth. Inclusion of thermobaricity in isopycnic-coordinate ocean models. Journal of Physical Oceanography, 29:2719–2729, 1999.

62

J. S. Turner. Turbulent entrainment: the development of the entrainment assumption, and its application to geophysical flows. J. Fluid Mech., 173:431–471, 1986. doi:10.1017/s0022112086001222.

63

L. Umlauf and H. Burchard. Second-order turbulence closure models for geophysical boundary layers. a review of recent work. Continental Shelf Res., 25(7-8):795–827, 2005. doi:10.1016/j.csr.2004.08.004.

64

Geoffrey K. Vallis. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-scale Circulation. Cambridge University Press, Cambridge, 2nd edition, 2017. 946 + xxv pp.

65

Martin Visbeck, John Marshall, Tom Haine, and Mike Spall. Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr., 27:381–402, 1997. doi:10.1175/1520-0485(1997)027<0381:SOETCI>2.0.CO;2.

66

D. Wang. Entrainment laws and a bulk mixed layer model of rotating convection derived from large-eddy simulations. Geophys. Res. Lett., 2003. doi:10.1029/2003gl017869.

67

Laurent White and Alistair Adcroft. A high-order finite volume remapping scheme for nonuniform grids: The piecewise quartic method (PQM). Journal of Computational Physics, 227(15):7394–7422, July 2008. URL: http://www.sciencedirect.com/science/article/pii/S0021999108002593 (visited on 2019-01-02), doi:10.1016/j.jcp.2008.04.026.

68

Laurent White, Alistair Adcroft, and Robert Hallberg. High-order regridding-remapping schemes for continuous isopycnal and generalized coordinates in ocean models. Journal of Computational Physics, 228(23):8665–8692, December 2009. URL: http://www.sciencedirect.com/science/article/pii/S0021999109004628 (visited on 2018-12-15), doi:10.1016/j.jcp.2009.08.016.

69

Daniel G. Wright. An Equation of State for Use in Ocean Models: Eckart's Formula Revisited. Journal of Atmospheric and Oceanic Technology, 14(3):735–740, June 1997. URL: https://journals.ametsoc.org/doi/abs/10.1175/1520-0426%281997%29014%3C0735%3AAEOSFU%3E2.0.CO%3B2, doi:10.1175/1520-0426(1997)014<0735:AEOSFU>2.0.CO;2.

70

S. Zilitinkevich and D. V. Mironov. A multi-limit formulation for the equilibrium depth of a stably stratified boundary layer. Boundary-Layer Meteorology, 81(3-4):325–351, 1996. doi:10.1007/bf02430334.

71

IOC, SCOR, and IAPSO. The international thermodynamic equation of seawater-2010: calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO, edition, 2010. 196pp.